Search results for "quantum circuits"

showing 2 items of 2 documents

Theory of quantum-circuit refrigeration by photon-assisted electron tunneling

2017

We focus on a recently experimentally realized scenario of normal-metal-insulator-superconductor tunnel junctions coupled to a superconducting resonator. We develop a first-principles theory to describe the effect of photon-assisted electron tunneling on the quantum state of the resonator. Our results are in very good quantitative agreement with the previous experiments on refrigeration and heating of the resonator using the photon-assisted tunneling, thus providing a stringent verification of the developed theory. Importantly, our results provide simple analytical estimates of the voltage-tunable coupling strength and temperature of the thermal reservoir formed by the photon-assisted tunne…

PhotonFOS: Physical sciences02 engineering and technology01 natural sciencesResonatorQuantum circuitquantum-circuit refrigerationQuantum stateCondensed Matter::Superconductivity0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)superconducting quantum circuits010306 general physicsQuantumQuantum tunnellingphoton-assisted tunnelingSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsThermal reservoirta114ta213021001 nanoscience & nanotechnologyComputational physics0210 nano-technologyQuantum Physics (quant-ph)Physical Review B
researchProduct

Supervised learning of time-independent Hamiltonians for gate design

2018

We present a general framework to tackle the problem of finding time-independent dynamics generating target unitary evolutions. We show that this problem is equivalently stated as a set of conditions over the spectrum of the time-independent gate generator, thus transforming the task to an inverse eigenvalue problem. We illustrate our methodology by identifying suitable time-independent generators implementing Toffoli and Fredkin gates without the need for ancillae or effective evolutions. We show how the same conditions can be used to solve the problem numerically, via supervised learning techniques. In turn, this allows us to solve problems that are not amenable, in general, to direct ana…

Theoretical computer scienceDiagonalFOS: Physical sciencesGeneral Physics and AstronomyInverseToffoli gate02 engineering and technologysupervised learning01 natural sciencesUnitary statequantum computingSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Computer Science::Hardware Architecturesymbols.namesakeComputer Science::Emerging Technologiesquant-ph020204 information systems0103 physical sciences0202 electrical engineering electronic engineering information engineering010306 general physicsEigenvalues and eigenvectorsQuantum computerMathematicsPhysicsFlexibility (engineering)Discrete mathematicsQuantum PhysicsSupervised learningInverse problemHermitian matrixmachine learningQubitsymbolsPairwise comparisonquantum circuitsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Generator (mathematics)Quantum Information and Measurement (QIM) V: Quantum Technologies
researchProduct